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An electrically conducting Boussinesq fluid is confined between two rigid horizontal 
planes. The fluid is permeated by a strong uniform horizontal magnetic field and the 
entire system rotates rapidly about a vertical axis. By heating the fluid from below 
and cooling it from above the system becomes unstable to small perturbations when 
the adverse temperature gradient becomes sufficiently large. Attention is restricted to 
small values of the Ekman number E and the ratio q of the thermal and magnetic 
diffusivities (see (1.2) and (1.3) below). In this parameter range marginal convection 
is steady and its character depends on the relative sizes of the Coriolis and Lorentz 
forces as measured by the parameter h (see (1.1) below). When h 2 2/34, motion 
consists of a single roll, whose axis is perpendicular to the applied magnetic field. On 
the other hand, when h < 2/34, two distinct rolls are possible: the axis of each roll 
lies oblique but with equal angle to the applied magnetic field. Only the latter case is 
discussed here. 

Once the Rayleigh number R exceeds its critical value R, only one of the two sets 
of single rolls remains stable, while its squared amplitude increases linearly with 
R - R,. For certain values of the parameters h and r (see (1.6) below) a second critical 
value may be isolated at  which the system becomes unstable to unidirectional geo- 
strophic flow perturbations aligned with the applied magnetic field. The instability 
sets in as either a steady or oscillatory shear flow dependent on the values taken by 
h and r. In both cases, after the secondary instability sets in, the roll amplitude 
remains largely insensitive to further increase in the Rayleigh number with the 
consequence that the geostrophic flow is stabilized. The amplitude of the shear, on 
the other hand, increases with R, adjusting its magnitude to ensure stability of the 
convection rolls. 

1. Introduction 
Until a few years ago the generally accepted picture of the magnetic field inside the 

Earth’s liquid core was one in which the azimuthal magnetic field is significantly 
larger than any other component. Since the azimuthal field is not observed at  the 
Earth’s surface, there is no direct evidence for this belief. On the other hand, since the 
Coriolis forces are large, it  is conjectured that there are vigorous azimuthal motions 
tending to align the magnetic field in the same direction. This picture forms the basis 
of Braginsky’s (1964) kinematic model of the geodynamo. An alternative model of the 

t Now at the School of Mathematics, University of Newcastle upon Tyne, England. 
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geodynamo has been proposed by Busse (1975) in which there is no significant azi- 
muthal flow and the magnetic field is maintained simply by small-scale convective 
motions. Since all components of the magnetic field are of comparable size, the 
magnetic field strength in the core is weak and its magnitude is comparable to the 
surface value. The answer to the question, which of the two models most closely 
resembles the geodynamo, is not known at the present time. Nevertheless recent 
arguments in support of strong- and weak-field models are given by Roberts (1978) 
and Busse (1978a, b )  respectively. 

In the present paper attention is focused upon aspects of a problem that arise in 
the strong field case, namely what determines the magnitude of the large azimuthal 
flow. One possible answer was provided by Taylor (1 963). He suggested that, in the 
case of a spherical container, the average of the azimuthal component of the Lorentz 
force taken over a circular cylinder, whose axis is coincident with the rotation axis, 
should vanish. The reason for the assumption is that, if the average is non-zero, and 
viscosity is neglected, the geostrophic flow is accelerated rapidly. Taylor regarded 
this behaviour as purely transient and proposed that the magnetic field would 
adjust itself on a relatively short time scale in such a way that the so-called Taylor 
condition is satisfied. Indeed in a steady state he was able to show that with the 
correct choice of geostrophic flow, which is determined simply as a function of the 
radial distance from the rotation axis, the ensuing solution of the magnetic-induction 
equation can lead to a magnetic field satisfying his condition. 

It is not always clear, however, that Taylor’s condition will be automatically 
satisfied. One such counter-example is the torsional oscillations in a spherical container 
discussed by Braginsky (1970), amongst others. Consider for simplicity a weak 
axisymmetric meridional magnetic field permeating a stationary fluid. Superimposed 
upon this basic state is the possibility of quasi-steady geostrophic flow varying on a 
time scale which is long compared with the rotation period. The ensuing Lorentz force 
fails to satisfy Taylor’s condition and so geostrophic cylinders are subject to a restoring 
force. As a result an Alfv6n wave, which is not directly affected by the Coriolis force, 
ensues in the form of torsional oscillations. Furthermore, when dissipative processes 
are taken into account the oscillation is damped and eventually decays. Of particular 
interest here is the effect of Ekman layers (e.g. see Roberts & Soward 1972) as they 
play a central role in the problems discussed in the following sections. There are, 
however, cases in which perturbations from a state of motion satisfying Taylor’s 
condition lead to systematic growth of the geostrophic flow (e.g. see Roberts & 
Stewartson 1975, and $8 4 to 6 below) and they contrast dramatically with the simple 
Alfvkn wave picture described above. It is exactly this instability which provides the 
main theme of this paper. 

Evidently steady fluid motions together with any related instabilities can be 
sustained in the presence of dissipation only if there is an energy source. In  the case 
of the geodynamo this is generally supposed to be thermal. A simple model, which 
isolates the dynamic influence of a strong azimuthal magnetic field on thermal con- 
vection in a rotating system, is as follows. An electrically conducting Boussinesq fluid 
of constant density p is confined between two horizontal slippery planes a distance d 
apart. The fluid is permeated by a strong uniform horizontal magnetic field B, and 
the entire system rotates about a vertical axis with angular velocity Q. The upper 

‘ and lower planes are maintained a t  constant temperatures To - AT and To respectively. 
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Both boundaries are assumed to be perfect electrical conductors. The choice of all 
boundary conditions is motivated by expediency but it is generally believed that more 
realistic conditions do not significantly alter the conclusions obtained from the 
model. By contrast, a more realistic geometry may alter the results considerably. 
This has already been demonstrated by Roberts & Loper (1979), Soward (1979) 
and Fearn (1979), who have investigated linear problems involving circular 
magnetic-field lines and have found other magnetically driven instabilities in addition 
to those of thermal origin. 

The thermal instability of rotating magnetic systems has been discussed by a 
number of authors including Chandrasekhar (1961). A detailed analysis of several 
different configurations, which include the above model, has been given more recently 
by Eltayeb (1972). The principal conclusion arrived a t  by these authors is that 
whether the onset of instability is dominated by rotational or magnetic effects depends 
upon the size of 

h = 2pR/vB;, (1.1) 

where v is the electrical conductivity. Roberts & Stewartson (1974) have discussed 
the particular problem outlined above in the case for which h is of order unity (see 
( 2 . 2 ~ )  below) and the Ekman number 

E = v/Rd2,  (1.2) 

where v is the viscosity, is small (see ( 2 . 2 ~ )  below). In this parameter range marginal 
convection is steady or oscillatory depending on the values of h and q, where 

q = 4 7  (1.3) 

is the ratio of the thermal and magnetic diffusivities K and q respectively. Roberts & 
Stewartson (1974) indicate clearly in their paper (subsequently referred to as RS I) the 
regions in the q, A plane where steady convection can occur. For small values of q 
(see (2.2b) below), of particular interest to the geodynamo, marginal convection is 
always steady. 

When the uniform magnetic field in our plane-layer model is not horizontal but 
vertical (say), then it is well known that the modified Rayleigh number 

R = gaATd/2n2~R, (1.4) 

where g is the acceleration due to  gravity and a is the coefficient of expansion, is 
minimized by order one values of A. On the other hand, for the special case of a uniform 
horizontal magnetic field the situation is a little different. Thus, when the magnetic 
field is weak, h 2 2/34, instability is characterized by convection rolls whose axes 
lie perpendicular to the magnetic field. In  this regime the magnetic field is said to 
relax the rotational constraint and so the critical Rayleigh number R, decreases with 
A. For larger fields, h < 2/34 (see also (3.1) below), two sets of convection rolls are 
possible whose axes make angles of + y and - y respectively with the magnetic field. 
The angle y selected ensures that an optimal balance is struck between the relative 
sizes of the Coriolis and Lorentz forces. Hence as h decreases from 2/34 to 0, y decreases 
from +n to 0, while R, remains constant. 

The finite amplitude dynamics of single-roll convection was discussed in RS I. 
Roberts & Stewartson (1975) also analysed the stability of oblique rolls, which occur 

15-2 
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when h < 2/34, to perturbations of the second roll system. This paper will be referred 
to as RS 11. Whereas Taylor’s condition is met by a single-roll system, this is not the 
case for the two-roll system and so a key ingredient in the evolution of the convection 
rolls is their coupling through the induced geostrophic flow. All values of q were 
investigated in RS I1 but of particular interest here are the results for small q. They 
are that one set of rolls is always unstable while the other set is only unstable in the 
limited parameter range given approximately by 

1.0794 < h < 2/34 (1.5) 

(see also (4.14) and the remarks following it).  
Within the range (1.5) neither roll system is stable and the subsequent evolution 

of the system once instability sets in is clearly of interest. The answer to this question 
was not obtained in RS I1 where only speculations were made of the outcome of the 
instability. I n  order to attempt an answer, the problem is reconsidered here with some 
modifications. Firstly the slippery boundaries are replaced by rigid boundaries SO that 
the geostrophic flow is damped and in the absence of the Lorentz force decays on the 
time scale 

7(a2/K+) = ~t(a2/2V)  (1.6) 

(see also (2.5) below), where T is a new dimensionless parameter defined by (1.6).  
Secondly attention is restricted to small values of q and as a result of this approxi- 
mation the mathematical analysis is greatly simplified. 

The role of the Ekman boundary layer is central to our treatment of the problem. 
As far as the motion in the rolls is concerned the Ekman layers only lead to small 
perturbations which may be disregarded. On the other hand, since the evolution of 
the geostrophic flow aligned with the applied magnetic field is not influenced either 
by the Coriolis force or the Lorentz force (except through interactions brought about 
by the convection rolls themselves) a more subtle force balance is achieved in which 
Ekman suction plays a prominent part. Indeed it is only through the resulting damping 
of the geostrophic flow that i t  is possible in the analysis below to isolate finite-amplitude 
equilibria. 

The outline of the paper is as follows. The mathematical problem is formulated 
in $ 2 and a weakly nonlinear theory of convection is developed for small values of the 
excess Rayleigh number R - R, in 5 3. A set of equations (see (3.12) below) is derived 
which relates the amplitudes of the two families of rolls together with the geostrophic 
flow naturally forced by them. It is shown that for sufficiently small values of R - R, 
one family of rolls is stable, while the other is unstable. I n  $ 4 a restricted parameter 
range (see (4.1) below) is considered. Here equations (3.12) continue to be valid up to 
and beyond the value of R - R, a t  which the single-roll family becomes unstable. 
After instability sets in a new oscillatory finite-amplitude state emerges whose 
stability is investigated. I n  $ 5  a more comprehensive study is undertaken of the 
stability of the single-roll solutions. I n  particular the region in the A ,  r plane where in- 
stability is possible is elucidated (see figure 1 ) .  Other than the occurrence of oscillatory 
geostrophic flow similar to that considered in 8 4, steady geostrophic flows can set 
in when h < 3-412. The stability of the latter flow is investigated in 5 6 and the paper 
ends with a brief discussion of the results in $ 7. 
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2. The governing equations 
In this section the mathematical statement of the problem outlined in the intro- 

duction is given. Except for the inclusion of the no-slip condition a t  the boundaries 
the problem is essentially the same as that considered by RS 11. The notation of that 
paper is followed whenever possible but there are some differences.S 

For all time t *, the system is referred to  rectangular Carteeian co-ordinates Ox*y*z*, 
where Oz* is vertical and Oy* is aligned with the applied magnetic field. The top and 
bottom planes are located a t  z* = d and 0 respectively. Let the fluid velocity be u*, 
the magnetic field be b* and the temperature be T. Then upon choosing d / n  and 
d2/Kn2 as units of length and time respectively the convection problem may be cast 
into dimensionless form by the change of variables 

X *  = ( d / n ) x ,  t* = (d2 /Kn2) t ,  ( 2 . l a ,  b )  

U* = (Kn/d )  ( U ~ + U ) ,  b* = Bo(Q+qb), ( 2 . 1  c ,  d )  

T = To + AT( - z + 8 ) / ~ ,  ( 2 . l e )  

where 3,9,2 are used to denote the unit vectors in the Ox, Oy, Oz directions respectively. 
In ( 2 . 1 ~ )  U ,  which gives the magnitude of the mean flow in the y direction, is in- 
dependent of y and z but spatially periodic in x. On the other hand, U, b and 8 are 
spatially periodic in both x and y (see ( 3 . 4 )  and ( 3 . 6 )  below). 

I n  terms of the dimensionless variables, the governing equations are given by 
RS I1 (equation ( 2 . 2 ) ) .  Since the subsequent analysis is restricted to the parameter 

E < 1 ,  q < L  ( 2 . 2 ~ 2 ,  b )  range 

h = 0(1), R = O(l) ,  ( 2 . 2 c , d )  

a number of terms in these equations may be neglected and i t  is sufficient to consider 

V . U  = 0, V.b = 0, ( 2 . 3 ~ 2 ,  b )  the simplified system 

( 2 . 3 ~ )  

( 2 . 3 d )  

( 2 . 3 e )  

for the fluctuating quantities u, b, 6' and total pressure p .  The scaling adopted in 
(2.1) and the approximations made in deriving ( 2 . 3 ) ,  which are listed below, anticipate 
the magnitude of the disturbances to be considered in the following sections. Firstly, 
since q is small, ( 2 . 3 d ,  e )  are linearized on the basis that  the perturbation magnetic 
field qb is small. Secondly, since there is considerable Ohmic diffusion (again q < l),  
the advection of magnetic field is neglected in the magnetic-induction equation ( 2 . 3 d ) .  
Thirdly, the inertia and viscous terms in the equation of motion ( 2 . 3 e ) ,  which are 
clearly negligible in comparison with the Coriolis force ( E  < l) ,  have also been dropped. 
By contrast no  approximations are made a t  this stage in the heat-conduction equation 
( 2 . 3 ~ ) .  It is therefore significant that, except for terms describing convection of heat, 
the system of equations ( 2 . 3 )  is linear. 

The boundary conditions that must be satisfied by the solutions of ( 2 . 3 )  are as 
follows, 

v20 + u .2 = a q a t  + u . vo + uae/ay, 
V2b + au/ay = 0, 

ablay - A2 x u + hR6'2 - V p  = 0 

~ . 2 = 8 = b . 2 = 2 x a b / a z = O  a t  z = O , n .  ( 2 . 4 )  

t One such example is the choice of direction of the z axis. In RS I1 it  is downward, whereas 
here i t  is upward ! 
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Here the no-slip condition 2 x u = 0 at z = 0, n, which leads to the formation of 
Ekman boundary layers, has been omitted. The reason for this is that we are not 
concerned with the order E4 error associated with the neglect of these layers. On the 
other hand, as indicated in the introduction Ekman suction seriously influences the 
mean shear, U .  Hence when the y component of the equation of motion is averaged 
and due account of the Ekman jump conditions is taken (e.g. see Moore 1978) the 

E a u p  + A u = A-1 a M p X  ( 2 . 5 ~ )  equation 

M = a.(bb).Q (2.5b) is obtained, where 

is a component of the Maxwell stress tensor averaged with respect to both y and z, 

E = TA,  A = Ei/q ,  ( 2 . 5 ~ )  

and T was introduced earlier in (1.6). In ( 2 . 5 ~ )  the large Coriolis and Lorentz forces 
present in (2 .3e )  are absent and a more subtle balance between weaker forces is 
achieved. In particular the flow is driven by the mean Lorentz force and damped by 
Ekman suction. The only effects neglected in ( 2 . 5 ~ )  are the viscous and mean Reynolds 
stresses in the mainstream flow. 

For geophysically relevant values of the parameters, the numbers A, T and E are 
all likely to be small and ordered such that 

1 % A % T %  E ,  (2.6) 

where, of course, only two out of the three are independent. This means that the 
term AU in (2 .5u) ,  which was absent in RS 11, is important here and plays a central 
role in the finite-amplitude analysis. Nevertheless, so that comparisons can be made 
with the earlier work corresponding to e finite and A = 0, the subsequent analysis 
does not stick rigidly to the ordering (2 .6 )  (e.g. see (4.1) below). Finally it must be 
emphasized that the present calculations also differ from RS I1 in as much as approxi- 
mations have been made which depend on the small size of q. The approximation 
q < 1, which was not made in RS 11, leads to considerable mathematical simplification. 

3. Weakly nonlinear convection 

theory of RS I and RS 11. Attention is restricted to the case 
The theory of weakly nonlinear convection developed here closely parallels the 

h < 2/34, (3 .1 )  

for which Eltayeb (1972) and RS I have shown instability is characterized by two 
families of rolls, each with axes oblique to the magnetic field. The two sets of marginal 
rolls have planform 

El,m = expi(lm+m/ly) (a > 0, /l > O ) ,  ( 3 . 2 ~ )  

w h e r e Z = f l , m =  + l a n d  

a2 = 2 - / l z ,  /lz = 34h. (3 .2b , c )  

The corresponding value of the critical Rayleigh number is 

R, = 34. (3 .3)  

We assume that R is close to R, and so the ensuing finite-amplitude motion is dominated 
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by the roll solutions (3 .2 ) ,  for which a more complete description is given by (3.9) 
below. Through nonlinear interactions higher harmonics are generated. Analysis of 
the coupling of the rolls with these harmonics leads to a set of nonlinear equations 
(( 3.12) below), which govern the slow evolution of the amplitude of each roll. 

The solution of (2 .3 )  is determined succinctly when u and b are expressed in terms 
of their toroidal and poloidal parts 

(3 .4a ,  b )  

For then (2 .3a ,  b )  are automatically satisfied and (2 .3c,  d ,  e )  reduce after integration to 

we - vz, qi = aept  + N ,  ( 3 . 5 ~ )  

a@/ay+ vy = 0, aqipy + v2g = 0, (3 .5b , c )  

u = V x @2+V x (V x #2), b = V x f 2 + V  x (V x 92) .  

a f p y  + ha$/& = 0, - a(VZg)/ay + h a@/& + hR(8 - 8) = 0, (3 .5d ,  e )  

where v2 = vz, + az/az2, N = uaepy + u . v e .  (3.5f9 9)  

The horizontal averages of $, qi, f and g vanish but the horizontal average of 0, namely 
B(z ,  t ) ,  is non-zero for finite amplitude convection. The character of the boundary 
conditions (2.4) permit solutions of (3 .5 )  and (2 .5 ) ,  which take the form 

[qi ,g,e,NI = C [# ,g ,e ,N11,m,nEl,msinnz,  (3.6b) 

( 3 . 6 ~ )  

where n > 0, the range of summation runs over integral1 values of 1, m, n and all 
complex quantities have the property 

e A , - m , n  = e,Tm,n, (3 .6d)  

the star denoting complex conjugate. Thus the governing equations (3 .5)  reduce to  
the ordinary differential equation 

Dl,m,n(O) [qi, $9 ~] i !" , ,n  = [AhB2)8, 0, - d - N ~ r m , n ,  ( 3 . 7 ~ )  

where the superscript T denotes transpose, the dot denotes differentiation with 
respect to t (8 = dO/dt) and 

Lm,n 

[U, MI = z [U, MI,~l,O, 
1 

(3 .7b,c)  

(3 .7d , e )  

provided I and m are not both zero. In  addition (2.5) becomes 

0 = - ~ q - A q + i l ( c ~ / h ) &  13.7f 1 
while all the coefficients il$rn,n and MI are given by (A 1)  and (A 2 )  in appendix A. 

the subscripts listed following the brackets. 

$8 5 and 6 below. 

t The notation used is that every quantity inside the square brackets is understood to have 

$ There is an exception. Non-integral values of I in the summation (3.6) are considered in 
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The solution of 
(3.8) 

has special significance, since it determines the growth ratep of the free mode ( 3 . 2 ~ )  
according to linear theory. Indeed, when < 2/34, the smallest value of R(O) and the 
corresponding values of a and ,8, for which p is zero, are given by (3.3) and (3.2b, c) 
respectively. In  this case the most general solution is 

e = A+ c. epk,l ~ , , , S i n z  ( ~ ( 0 )  = R,) 
Z=fl 

m = f l  

with similar expressions for the other variables, where 

( 3 . 9 ~ )  

(3.9b,c) 

It represents two distinct rolls whose amplitudes and phases are determined completely 
by the complex constants a&l. 

In  the case of finite-amplitude convection, A is adopted as the expansion parameter. 
It is supposed that 8, k, q5, f and g are all of order At and have power-series expansions 
of the form e = Aae(1) + Ae(2) + . . . , ( 3 . 1 0 ~ )  

where the first-order terms are given by (3.9). Since the Maxwell stress component 
M is proportional to the square of the magnetic-field strength, it is of order A and has 
an expansion 

M = AW2) + AaM(3) + . . . , (3.1 0 b)  

where M(2) i~  given by (A 4). Now it transpires that, in the parameter rangesof interest, 
this stress drives a mean shear U ,  which is of order A4 and can be written 

U = A*U(1)+AU(2)+ ... . ( 3 . 1 0 ~ )  

At lowest order the direct coupling of the positive (a+) and negative (a_) rolls leads 

U(1) = up) E2,, + C.C. ( U p  = i W / / 3 ) ,  (3.11) to the shear flow 

where C.C. denotes the complex conjugate ofthe expression preceding it. As a result of 
the assumptions ( 3 . 1 0 ~ )  c), the heat convection term (3.59) is of order A and possesses 
an expansion similar to (3.10b). The first non-zero coefficient N(2) is given by (A 3). 

If in addition to the assumptions (3.10)) 8 and U evolve on a time scale that is long 
compared with unity, the terms on the right-hand side of (3.7) only lead to small 
perturbations of the first-order solution (3.9) and so allow (3.7) to be solved iteratively. 
At second order the evaluation of M(2) and N(2) described in the previous paragraph 
and outlined in appendix A leads to the conservative system of equations (A 9) which 
couple the roll amplitudes a*l with the scaled shear flow v. Upon proceeding to third 
order the analysis of appendix A yields 

= 4 A h T 1  + A@*u*l, (3 .12a)b )  

( 3 . 1 2 ~ )  eit = A ~ p a ,  a_, + AOv, 
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(3 .13a ,  b )  where @* = d - 6 V - 2 A  f l  - ( 2  + C, k CA) A TI,  

(3.13 c )  

(3 .13d ,e )  

d = R(2) /3) ,  S = ( 3  + 4a2) /32a4,  p = 4 a p / 3 ,  (3 .13f ,  9, h )  
k* = (p/8a3) [( 1 - 2a2) ( 3  + 4a2)  T 2 , /34ap( 1 + 4 a 2 ) ] / ( 3  + 8a2) (3 .13 i )  

and the coefficients C, and C, are defined by (A 14a,  b ) .  In order to illustrate a few 
of the key properties of (3 .12) ,  which will be analysed in more detail in the following 
sections, the limit d 4 0 is now considered briefly. 

The limit d 4 0 

The derivation of (3 .12)  was based on the use of A as an expansion parameter. There 
are, however, two other parameters, namely d and 7, which are independent of the 
magnetic-field strength, that could have been utilized. In fact d is the natural choice 
and is the one generally adopted in smaI1-amplitude expansions. It has the advantage 
of isolating the behaviour of the solutions of the governing equations immediately 
following the bifurcation (d > 0) which occurs when R = R,. For our problem it is 
also the simplest case because the equations may be approximated without appeal to 
the size of A and 7. Instead it is supposed that A *, and v are all of order d.  The analysis 
recovers (3 .12 ) ,  in which correct to order d (3 .13a ,  b, c )  are approximated by 

@* = . d - 2 A * 1 - ( 2 + C , f C A ) A , ,  (d  > 0 ) ,  (3.14a, b )  

@ = - I .  ( 3 . 1 4 ~ )  

If the free-decay mode a*, = 0, v cc e-t/r, which corresponds to the simple damping 
of the shear flow by Ekman suction on the time scale 7, is ignored, attention may be 
restricted to events which occur on the long time scale d-1. Accordingly Eir may be 
neglected in (3.12 c )  to yield 

v = A-*,uu, U-,. ( 3 . 1 5 ~ )  

Substitution of ( 3 . 1 5 ~ )  into (3.12) gives 

&*I= (kp.&l+A@*)a*,. (3 .15b ,c)  

There are three possible steady-state equilibria. The first two are the single-roll 
solutions ( 3 . 1 6 ~ )  

A!!'! = ad, A ,  = V = 0. (3.16 b )  

In  addition there is a third double-roll solution, for which A*, and V are all non-zero, 
but this only exists when 

cS > lcA-p/Al- (3.17) 

Since our subsequent analysis is restricted to the case of small A,  for which the in- 
equality (3 .17)  fails, this case will be considered no further. 

To test the stability of the single-roll solutions (3 .16)  small perturbations to the 
basic state are considered and so 

a*, = a$': + $*, and a,, = (3 .18)  

are substituted into (3 .15b) .  Linearization yields 
\ a+, = - 2 A ( A 9  + a&), 

= - aAd{CN T (cA - p / A ) >  &71* 

( 3 . 1 9 ~ )  

(3.19 b )  
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From ( 3 . 1 9 ~ )  it follows that perturbations of the primary roll always decay. On the 
other hand, for all sufficiently small A, it is clear from (3.19b) that the positive-roll 
solution ( 3 . 1 6 ~ )  is stable to small perturbations of the secondary negative roll. By 
contrast, the negative-roll solution (3.16 b)  is unstable to small perturbations of the 
secondary positive roll. This result is in partial agreement with the findings of RS 11. 
They found that the negative roll is unstable but they also found that the positive roll 
is unstable in certain parameter ranges. The discrepancy results from the severe 
truncation of (3.12), which is applicable in the limit d 4 0, keeping A and 7 finite, and 
will be resolved in the more detailed analysis of the following sections. 

4. Oscillatory shear flow 
In  view of the results of the preliminary investigation of the limit d J. 0 at the end of 

3 3, attention is focused here and in 3 5 ,  below, upon the stability of the positive roll 
( 3 . 1 6 ~ )  when d is of order unity. In  $ 5  a general linear-stability calculation is under- 
taken to clarify the parameter ranges, in which the positive roll is unstable. It indicates 
that, when 7 is large and h lies in the interval (14, the most readily excited overstable 
modes are correctly described by (3.12). Since the applicability of (3.12) is not restricted 
to the linear regime, they are utilized in this section to investigate the finite-amplitude 
oscillatory shear flow, which is set up at  the post-bifurcation stage. In order to obtain 
simple solutions of (3.12) it  is expedient to make the additional assumption that e is 
small. Consequently throughout this section it is supposed that 

d = O(l) ,  I $ E A. (4.1 a ,  b )  

Since 8 equals r A ,  the final inequality is simply a statement that 7 is large. 
In  the parameter range (4.1)) a+, and v satisfy the simplified system (A 9) a t  lowest 

order. A number of integrations can be made which yield three constants of the 
motion. They are 

s*, =puA*,TEV, ( 4 . 2 ~ )  

(4.2b) h = - &74(v*d -vd*). 

Elimination of a+, from (A 9) then yields the single second-order equation 

75+(8+28V)2.'= 0, 

where s = 8, -s-,. 
Integration of ( 4 . 3 ~ )  leads to 

(4.3u) 

(4.3b) 

= - ~ ~ + ~ E T I - S V ~ - C V ~ ,  (4.3c) 

where (A 9) may be used to show that the constant of integration E is given by 

EE = &3,S-,. (4.3d) 

According to (4.3 a )  v can execute nonlinear finite-amplitude oscillations, which define 
orbits in the complex v-plane. In addition t o  S ,  ( 4 . 3 ~ )  indicates that the principal 
characteristics of the orbits are defined by the constants h and E which are analogous 
to angular momentum and energy in classical orbit theory. 

Exact solutions of ( 4 . 3 ~ )  exist in terms of elliptic functions. Nevertheless, when S 
is positive and provided sV/S  remains small, the solution of ( 4 . 3 ~ )  only deviates 
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slightly from simple harmonic motion with frequency (S/7)4. I n  this case it is more 
convenient to reprezlent the solution by the rapidly convergent Fourier series 

V = V, + {& ee iw t  + eT4 eaiwt + c.c.} + O(e2) ,  (4.4) 

where 2n/o is the period of oscillation of the complex velocity v. Substitution of (4.4) 
into ( 4 . 3 ~ )  and equating coefficients yield 

TO' = S + 3eE/S + O(e2) ,  ( 4 . 5 ~ )  

(4.5b) 

(4.5c) 

( 4 . 5 d )  

It is perhaps worth noting a t  this point that, when E = v = 0, the cases S > 0 and 
S < 0 correspond to the positive- and negative-roll solutions ( 3 . 1 6 ~ )  b) respectively. 
According to ( 4 . 3 ~ )  the positive roll is neutrally stable, while the negative roll is 
unstable. Nevertheless, even when S < 0, v does not grow indefinitely because of the 
term 2eV in ( 4 . 3 ~ ) .  Instead after a finite perturbation of h, E and v it executes large- 
amplitude oscillations, which cannot be adequately described by (4.4) and (4.5). 

When the terms of order A in (3.12) are taken into account (4.3a, c) must be modified 
and the term v 2  in ( 4 . 3 ~ )  is replaced by ( - 2 r 1 @  V)2. I n  addition S*, and h are no 
longer constant but satisfy 

V, = E/S - (3e/4S3) (3E2 - h2S) + 0 ( e 2 ) ,  

= (E2 - h2S)/4S2 - (eE/4S4) (4E2 - 3h'S) + 0 ( e 2 ) ,  

v, = vy2s + O(E). 

(4.6a, b) 

( 4 . 6 ~ )  

where, from (3.13) and (4.2a), 

@* = d-p-1{2S*1+(2+Cs+C,)S,,}-{Sr (e /p ) (Cs+Q~) )  J', (4.7a, b) 

0 = - 1 + p-l{k+ s, - k-, s-,} + (e/p) (k, + k-) v. (4.7c) 

Since V fluctuates rapidly, S*, and h do also. Their fluctuating parts, however, are 
small and are dominated by their mean parts which evolve slowly. For this reason 
(4.6) is averaged over the period of oscillation 2n/w and the approximation is made 
that 

where the average is denoted by the bar. As a result, the only fluctuating quantities 
in (4.6), which must be averaged, are V and V 2 .  Their values are 

v = v,, V2 = V,z+21v,12+0(€2), (4.9a, b) 

The secular behaviour of small-amplitude oscillations in the neighbourhood of the 

(4.10) 

The corresponding values of E and S are determined by (4.3b, d )  and so (4.5) and (4.9) 

(4.1 1 a)  yield 

(4.11 b )  

8&, = Sfl, E = h, (4.8) 

- 

where V, and IV,12 are defined by (4.5). 

positive-roll solution may be investigated by supposing that 

s, = sp + esy) + 0(€2), s-, = esy +a~; + 0 ( ~ 3 ) .  

F = 3S(ll+O(€), 

VZ = (381') SC_li2 - 4h2)/8SI0) + O(E). 



460 A .  M .  Soward 

To leading order in powers of e the average of (4.6) simplifies considerably and reduces 
to 

(4.12~) 

(4.12b) 

(4.12~) 

&lo) = A ( (2d  - - 4 Sio) - 6s:;) Sio) + (1 - 2 Sio)) # ? I ] ,  
P 

&!!I = - (A/€) (1 - 'c+ SP,) ij"j'I, 
P 

The positive-roll solution ( 3 . 1 6 ~ )  corresponds to the stationary solution 

S(0) 1 = 1 ZP d,  S?] = h = 0. (4.13) 

According to (4.12) it  is unstable when 

0 < 2 /k+  < d (4.14) 

and stable otherwise. Evidently instability i s  only possible for some value of d( > 0 ) ,  
when k+ > 0. This condition on k+ is exactly the same as the inequality (4.23) of 
RS 11, which holds whenever h lies in the interval (1 4. 

When the inequality (4.14) is satisfied a new finite-amplitude equilibrium is possible 

(4.15) 
with 

SYI = (2 /6 )  (d  - 2 / k + ) ,  

It is composed of a primary and secondary flow. The former consists of the single 
positive roll, whose amplitude is fixed independent of the Rayleigh number such that 
A, = i / k + .  The latter consists of the shear flow, which is comparable in magnitude 
to the primary roll, together with additional order e contributions of both positive 
and negative rolls. According to (4.5~) and (4.15), this secondary flow oscillates with 

(4.16) 
frequency 

When small perturbations are superimposed on this basic state so that 

Sio) = ,u/k+, h = constant. 

w = (p /k+7)*  + O(e7-4). 

Si") = p / k +  + &jl, SCli = ( 2 / S )  (d  - 2 / k + )  + 8-1, (4.17) 

linearization of (4.12u, b )  yields 

74i1 = - A*{(/-d/k+) 8-1 + 2 d [ 2 / k +  + (k+/pJ) (d - 2 / k + ) ]  ~1}, (4.18~) 

(4.18 b )  7*k1 = 2A*(k+/p6) (d  - 2 / k + )  sl. 

At lowest order the solutions describe oscillations with frequency 

A4((2d - 4/k+) /7)4 .  (4.18~) 

When the €4 term in (4.18~) is not neglected, however, it becomes apparent that these 
oscillations are lightly damped and decay on the longer time scale A-l. 

The above calculations establish the stability of the new equilibrium (4.15) but 
give no indication of the value taken by h, because the coefficient of h in (4.12~) is 
zero. A higher-order theory is therefore required which considers the equations for 
Xi') and S?; in the expansions (4. lo), where the first-order terms Sio) and S?i are given 
by (4.15). Since h and consequently Sil) and evolve on the long time scale A-l, 
the term &!!; in (4.6b) is negligible and so the average of that equation yields 

e-16- s-, - n + e-1G-V = O(s). (4.19) 
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The basis for this approximation is suggested by the comparison of the right-hand 
sides of (4 .12a)  b ) ,  where the latter is larger by a factor e-l. Formally at  any rate (4 .19)  
determines S\') in terms of h, while ( 4 . 6 a )  determines S?; in terms of Si'), A!&') and h. 
With the aid of (4 .19 )  the analysis of appendix B shows that ( 4 . 6 ~ )  reduces to 

where to the order of accuracy considered E and S are constants and 

k, + k- ( 3  + 4a2) ( 9  - 4a2) K = &+- = 
P 32a4(3 + 8a2) 

(4 .20a)  

(4 .20  b )  

is positive for all a2 in the interval 0 < a2 < 2 of interest. 
According to ( 4 . 2 0 a )  there are two stationary equilibria. One is characterized by 

h2 = E 2 / S  ( 4 . 2 1 ~ )  

for which V , =  E / S ,  V , =  0 .  (4.21 b,  c )  

The corresponding complex velocity is 

pu'2' = iv = yte+iwt (4.22 a)  

and so the resulting shear flow velocity (3 .11)  describes one of the two travelling waves 

u = ( 2 / P )  v; cos (am 5 wt) .  (4 .22b)  

The other equilibrium is characterized by 

h = 0, (4.23 a )  

for which 2lV,1 = V, = E/S .  (4 .23  b )  

The corresponding complex velocity is 

/9U(2' = i v  = (2V,)t cos wt (4.24 a)  

and so in this case the shear flow velocity (3 .11)  is described by the standing wave 

U = (2 / /3)  (2V,)3 cos wt cos 2ax.  (4.24 b )  

Since K is positive, ( 4 . 2 0 ~ )  indicates that the travelling-wave solution (4 .22)  is 
unstable, while the standing-wave solution (4 .24)  is stable. 

In view of the result (4 .14 )  it  is apparent that the analysis of this section relates 
closely to the problem considered in RS 11. There Ekman suction was ignored and this 
corresponds to the omission of the term - 1 in the expression ( 3 . 1 3 ~ )  for 0. Inspection 
of the governing equations (3.7) indicates that, when Ekman suction is included, this 
term is only negligible in the limit A +  0 with e and Ad kept finite. Since all the equi- 
libria isolated in this section rely on this damping of the geostrophic shear for either 
their existence or stability, it is clear that the case d = O(A-1) lies outside the scope 
of the present calculations. Despite the fact that our analysis can say nothing about 
this inviscid limit, it does isolate some of the key physical processes which are of 
fundamental importance to the problem. 
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TO summarize, the positive-roll solution ( 3 . 1 6 ~ )  is stable when k+ < 0 for all order 
one values of d but when k+ > 0 it is stable only when d < 2/k+. In  these parameter 
ranges all shear flow perturbations are damped and the squared amplitude A ,  of 
the positive roll is simply proportional to the excess Rayleigh number. Once d exceeds 
the value 2/lc+( > 0) this solution is unstable because the corresponding value of O is 
negative. This means that the term AOv in ( 3 . 1 2 ~ )  rather than damping shear flow 
perturbations causes them to grow. To achieve a new stable equilibrium the amplitude 
of the positive roll remains roughly constant in such a way that its tendency to 
accelerate the shear flow exactly balances damping by Ekman suction (see ( 3 . 1 2 ~ )  
and ( 3 . 1 3 ~ ) :  A ,  = l /k+).  On the other hand, as the Rayleigh number is increased 
the amplitude of the positive roll can only remain fixed if a+ is kept small (see ( 3 . 1 2 ~ )  
and ( 3 . 1 3 ~ ) :  V = (d- 2 / k + ) / 6 ) .  The oscillatory character of the secondary flow, 
which occurs after the bifurcation a t  d = 2 / k + ,  is imposed by the relatively large 
terms of order A1 in (3.12) which provide a most effective coupling between the shear 
flow and the two rolls. Even for order one values of d the oscillatory shear flow is 
comparable in magnitude to the primary convection roll. Consequently when d is 
large the shear flow must predominate and the positive roll is then relatively in- 
significant. Of course, the analysis is not valid when d is of order A-, but we may 
speculate that long before this value is achieved the basic flow proposed in this 
section will be subject to yet further secondary instabilities. 

5. The stability of the finite-amplitude roll 
The stability analysis of the positive roll in 5 4 is not generally valid for two reasons. 

Firstly, in addition to the assumption A < 1, which will also be made here, the analysis 
required that T & 1.  Secondly, only a special class of disturbances to the positive roll 
was investigated and no attempt was made to investigate stability with respect to 
arbitrary perturbations, To rectify these deficiencies the analysis of this section is 
focused on the parameter range 

A < 1, 7 =  O(1). (5.1) 

Here, guided by the results of 4 4, it  is reasonable to anticipate that the most unstable 
disturbances are not of thc convective type but rather take the form of geostrophic 
flow perturbations. One further point which emerges from the analysis is that the 
mechanism for the instability is associated with the term Ak+Alv in (3.12c), which 
does not depend in any direct way on the interaction of the shear with the negative 
roll. There is therefore no reason why attention should be focused upon the shear 
(3.11), whose choice was motivated by the fact that it provided the natural coupling 
between the positive and negative rolls. Instead throughout this section the stability 
of the positive roll is investigated with respect to the arbitrary shear flow perturbation 

U(1) = U$2EE,,,,+c.c. (U$2 = iv//3), (5.2) 

where L is some positive number not necessarily equal to unity. 

vection of heat, which may be quantified with (A 1 c) and (3.9) to give 
The interaction of the mean shear flow (5.2) with the positive roll leads to con- 
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As a result the forced mode, which is of order A, can be expressed in the form 

0c2) = ~(9+E2,+,,,+9~E-2L+1,1)sinz+c.c. (5 .4 )  

M(3) = E2L,0+ C.C. (5 .5 )  

It interacts with the original positive roll to produce a mean Maxwell stress 

and the associated force drives the original shear flow perturbation (5 .2 ) .  As a result 
of the various interactions the equations governing the perturbations 9* and v are 

&+ +p+ 9, = V a l  + O(A), ( 5 . 6 ~ )  

9-+pu_9- = -v*a,+O(A), (5 .6b)  

rd+v = p(A+8+a,*+h-9ira1)+O(A), ( 5 . 6 ~ )  

where (5.7a) 

A* = +X( * L ) ,  
( 1  - (1  + L)  a2) ( 3 +  2L(1 + L )  a') - 3* ap(1 +A) (1  + 2L(1 + L )  a2) 

( 3  + 4L( 1 +L)  a2) ( 3  + 2L( 1 + L )  a2) 
X(L) = 3L 

(5.7b)  

The details of the calculations leading to (5 .6 )  are outlined in appendix C. In  the 
stability calculations which follow, it is assumed that the amplitude a, of the positive- 
roll is constant. Nevertheless the finite amplitude interaction of the shear flow v with 
the temperature perturbations 9* may cause A ,  to evolve over a long time scale and 
not to stay close to its equilibrium values +d. In  appendix C the equation 

6, = A((v9- - v*9+) + (d - 2A,) a,} + O(A2) (5.8) 

governing a, is derived and it is usedin 3 6 below in conjunction with (5 .6)  to investigate 
a steady finite-amplitude state that may ensue once the positive roll is no longer stable. 

When L = 1, it  is possible to make a comparison of equations (5 .6 )  and (5 .8 )  with 
(3 .12) .  In this case the coefficients p* and A* are 

p- = 0, p+ = 116, (5.9a, b)  

and AM- = a?,. (5.9e) 

The only term remaining in (5 .6)  and (6.8), which does not appear in (3.12),  is &+ in 
( 5 . 6 a ) .  It was neglected in 9 3 on the basis that the time scale is long. With this term 
ignored (3.12) reduces to (5 .6 )  and (5 .8)  if 

@+ = d-6V-2A1,  @- = 0,  0 = - l+k ,A , .  (5.10) 

The other terms appearing in (3.13 a-c) are not important in this section because the 
amplitude of the secondary convection is so small. They are only important in a 
higher -order theory . 

Upon linearization equations (5 .6 )  and (5 .8 )  decouple. Hence (5.8) becomes in- 
dependent of 9* and v and the simplified equation clearly demonstrates the stability 
of the equilibrium A ,  = i d .  With a, constant the linear equations (5 .6)  have solutions 
proportional to ept, where p is a root of the cubic 

A- = I,  A+ = k+/@ (5.9c, a) 

r p + l =  Alp(-+--) .  A+ A- 
P + P  P+P- 

(5.11) 



464 A.  M .  Soward 

Evidently when the amplitude a, of the convection roll is small the mean Lorentz force 
is insignificant and (5.11) indicates the perturbation decays at  the rate 1/7. As the 
Rayleigh number and amplitude a, increase, the shear flow may become unstable 
in one of two ways. The simplest case is steady flow, p = 0, and then the amplitude of 
the roll together with the other coefficients appearing in (5.11) must be such that 

(5.12) 

Evidently instability is only possible for some value of A, when the right-hand side 
of (5.12) is positive. The parameter range for which this occurs appears to be limited 
to small values of both L and A. Indeed the largest value of A, for which the positivity 
requirement can be met for some value of L, corresponds to the limiting case L = 0. 
In  this limit, we have 

i 2a4 Y (5.13) 
A+ A- 
P+ P- 

(2a2 - 3) (3(a2 + 2) - 34 a/3) _-_-  - 

which vanishes when a2 = 8. It follows that the exchange of stabilities occurs for 

A < 3-412. (5.14) some value of A, only when 

If, on the other hand, instability sets in as overstability, thep is purely imaginary, 

p = iw ,  ( 5 . 1 5 ~ )  

and the real and imaginary parts of (5.11) yield 

(5.15b) 

The region in parameter space in which overstability is possible for some value of A, 
is determined by t,he requirement that the right-hand sides of (5.15b)c) are both 
positive. It is illustrated in figure 1 ,  where the stability boundary, which corresponds 
to l /A,  = 0, was computed numerically. It is perhaps of some interest to note that 
the value of L for the critical mode on this boundary increases from zero a t  

A + 1.03098, = 0 ( 5 . 1 6 ~ )  

to infinity at  = 2/3*, 1/7 = 0. (5.16 b) 

When 7 1 and L is fixed not close to unity, it is clear from (5 .15b)  that instability 
first sets in when A ,  is of order 7.  By contrast, when IL - 1 I 1, (5.15) with the help 
of (5.9) indicates that 

A, = l/k+, w = (pL/k+~)*. (5.17) 

Consequently when A lies in the interval (1.5), k+ is positive and the order one value 
of A, given by (5.17) yields the critical value of the amplitude appropriate to the 
onset of instability in agreement with (4.15) and (4.16) of 9 4. 

Inspection of figure 1 indicates that overstability can only occur for small values 
of 117. Furthermore, since the parameter ranges in which the exchange of stabilities 
and overstability are possible are mutually distinct, there is never competition for the 
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FIGURE 1.  The curves I and I1 define the stability boundaries for overstability and exchange 
of stability in the a ,  7-I plane. Here a = ( 2  - 3444  rather than A is chosen as a co-ordinate to 
stretch out the region in which overstability is possible. 

preferred mode. One other interesting comparison between the two modes of insta- 
bility is worth noting. It is that the steady modes (5.12) are characterized by 

A- A+ 
- < - - 0  
P- Y, 

whereas the overstable modes (5.15) are characterized by 

(5.1 8 a)  

(5 .18b)  

This means that the 9- perturbations are responsible for driving the steady modes, 
in contrast with the overstable modes which are driven by the I?, perturbations. Once 
instability sets in new finite-amplitude states are possible. Those oscillatory states 
characterized by r % 1 and L = 1 were analysed in 9 4. On the other hand, the steady 
states characterized by small values of h and L are discussed in the following section. 

6. Steady shear flow 

a new steady-state equilibrium solution of (5.6) and (5.8) is possible in which 
V take the values 

When A < 3 4 / 2  and when A, exceeds its critical value A,, (say) defined by (5.12), 
and 

(6.la, b )  a,, = ,qlvoa,, 9, = -pc_lv* 0 a lC7 

1 ~ ~ 1 ~  = V, = (d-2AlC) -+- . I(;+ ;I ( 6 . 1 ~ )  

To test stability we set - 
= 9, + 9% e p t ,  a, = a,, + 6, e p t ,  v = vo + ept (6.2a, b, c)  

together with similar expressions for a:, a:, v*, where, for example, 

a;l* = al*, + 6: ept. (6.2d) 
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In other words, the complex conjugate of the function is taken without taking the 
complex conjugate of p .  The expressions (6.2) are substituted into (5.6) and (5.8) 
which are then linearized with respect to the constants marked with a tilde. Accordingly 
(5.6u, b) yield 

3+ = ( v o ~ , + a l c ~ ) / ( p + ~ + ) ,  8- = - ( v ~ ~ , + a , , ~ * ) / ( p + ~ - ) ,  (6.3) 

which together with ( 5 . 6 ~ )  and (5.8) lead to a pair of equations relating a,, a,*, v and v*. 

P = v ~ . i + v o 6 * ,  Jl  = a,*,d,+a,,d~, (6.4a, b) 

Two types of mode are possible, which can be distinguished by the values of 

- 
,&=-  $iprqvo*&-woB*), dl = -$ip7~(al.ca,-a1,ii:), (6.4c, d )  

where dl is a new variable but h was defined earlier by (4.2b). One mode is charac- 
terized by P= a, = 0. It corresponds to the situation in which the amplitude of the 
basic state remains unchanged but the phase of the complex constants defining it 
vary with time. In this case (5.6c),  (5 .8 ) ,  (6.4c, d )  yield 

h A- '-12,. (6.5a) 
P 

gy- 1 1 +') n, 
P P+P+ P i  P+P- P- 

(6.5b) 

which after elimination of ,& and Jleads to a dispersion relation forp. Upon substitution 
of the identities (5.12) and (6.1) it  reduces further to the quadratic equation 

p-A(d -2AlC)+A& 
P 

where (6.6b) 

At lowest order the two values of p satisfy 

P a p )  = 0 (6.7) 

which is simply (5.11) with A ,  given by (5.12). By definition of the critical state the 
two non-zero rootsof (6.7) must havenegative real parts and so stability is guaranteed. 

The other class of solutions are characterized by & = J? = 0 and correspond to 
amplitude fluctuations with no phase change. As above a pair of coupled equations 
similar to (6.5) can be obtained which yield the quartic equation 

1 1 
p{p  - 2A(d - 4AlC)} 2 ( p )  = - A & ( T ~  + 2) (L + - +- 

P+P+ P4- P+P- P- 

for p .  Two of the roots are of order unity and are again given to leading order in A 
by 2 ( p )  = 0. They correspond to a pair of decaying modes. The remaining two roots 
are small and can be expressed in the form 

p = & ~ A * W ( ~ ) + A ~ ( ~ ) + O ( A ~ ) ,  ( 6 . 9 ~ )  
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where (6.9b) 

p(2) = - 4A1,( 1 - V,/V,) ( 6 . 9 ~ )  

and V ,  is a complicated function independent of V,. Since the product of the non- 
zero roots of (6.7) is positive, it follows tha t9 (0 )  > 0. In addition ,uk are also positive 
and so the frequency w(l) is real. Evidently if V ,  < 0,  the equilibrium is stable for all 
order one values of V, but if V,  > 0 the equilibrium becomes unstable once V, exceeds 
the critical value V,. 

Though the steady finite-amplitude state analysed in this section is quite distinct 
from the oscillatory motion investigated in $ 4  there is one important similarity. It is 
that, once the shear flow develops, the amplitude of the positive roll remains constant 
as the Rayleigh number is increased. Specifically in the steady case when a, takes its 
critical value, the growth rates for the three normal modes of (5.6) are given by the 
roots of (6.7). Two of the modes decay, while the third is neutrally stable. With the 
addition of the amplitude equation (5 .8) ,  a, is no longer held constant and the results 
are modified. In  fact the preceding analysis has shown that the two decaying modes 
predicted by (5.6) split into four decaying modes, while the neutral mode executes 
slow oscillations on a time scale of order A-4. These oscillations may either grow or 
decay on a yet longer time scale of order A-l depending on the values taken by V, and 
V ,  (see (6.9)). 

7. Discussion 
The instability of the single-roll solutions is at first sight surprising, since it con- 

tradicts the following intuitive notion. The idea is that, as a result of single-roll 
convection, magnetic field perturbations are produced linking planes z = constant, on 
which the geostrophic flow takes a constant value, one with another. Consequently 
one anticipates that the geostrophic flow would have an Alfvh wave character similar 
to the torsional oscillations described in the introduction. Furthermore once dissi- 
pative processes are accounted for this motion would eventually decay. The reason 
for the failure of this simple picture is that we have been considering in this paper 
very small convective velocities which do not lead to transverse magnetic fields of 
sufficient size to make this mechanism operative. Instead a more subtle forcing of 
the geostrophic flow is achieved which is most readily traced through the terms on 
the right-hand side of (5.1 1). The processes which lead to the force are as follows. The 
introduction of the shear proportional to E2L,O (see (5.2)) leads to convection of the 
heat perturbations originally generated by the convective rolls. The new perturba- 
tions force two secondary rolls whose planforms are E2L+l,, and E-2L+1,1 and whose 
structures are determined from (5.4).  It is the contribution to the Lorentz force, result- 
ing from the magnetic field perturbations associated with one of the two secondary 
rolls when they are superimposed upon the initial El,l field perturbations due to the 
original rolls that forces the geostrophic motion and so leads to instability. The 
E-,L+l,l roll is responsible for the exchange of stabilities, while the E2L+1,1 roll is 
responsible for over-stability ( L  > 0).  

Production of geostrophic flow by this instability is evidently of some importance, 
since it provides a basic mechanism capable of limiting the growth of convective 
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motions. In  particular, when the Rayleigh number is increased beyond the value 
appropriate to the geostrophic shear flow instability, the amplitude of the convection 
remains roughly constant, while the shear velocity continues to increase. Though the 
range of validity of these results is severely limited by the small parameter expansion 
scheme adopted, the qualitative picture may well hold true for quite moderate 
increments of the Rayleigh number. That being so the flow is dominated by geostrophic 
motions which depend for their existence on relatively slow convective velocities. How 
these results are modified in more realistic geometries or by the addition of mean 
meridional magnetic fields (i.e. with components in the x, z plane) is of considerable 
interest but outside the scope of the present analysis. 
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Appendix A 
Substitution of (3.6) into ( 3 . 4 ~ )  and (3.59) yields 

Y , m ,  n = J(;A,ln + n + Jt;: m, n? 
where 

while substitution of (3.6) into ( 3 . 4 b )  and (2 .5b )  yields 

4 = + C 

n + n ( ' ~ ' ~ ~ 2 - ~ l m ~ 8 2 ) g ~ l , m l , n f i 2 , m , , n > .  (A 2) 
m,+m,= 0 

{m14 apfi,, ml, nfi2, ma. n - n211 m2 ah,,  ml, n gl,, m2, n 
1,+1,=1 

At lowest order (3.9a, b )  and (A 1)  yield 

N(') = +{2(Al+A-,) + ( a ~ a , a ~ , E o , 2 + ~ ~ a , a ~ , E 2 , 0 +  c.c.)}sin 22 

- $(v(al 4, , + a*, El, - a: El, -l - a_, E3, -,) + c.c.} sin z, (A 3) 

(A 4) 

while ( 3 . 9 ~ )  and (A 2) yield 

MC2) = +(Ap/ap) a, a-,E,,, + C.C. + constant, 
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where v, A*l and ,u are given by (3.11), (3.13d, h) respectively and C.C. denotes the 
complex conjugate of the expression preceding it. From (3.7) and (A 3) it follows that 
the order A terms forced by the nonlinearity have the form 

Oc2) = {0gi,2+(00,2,2 (2) E o,2+@:b,2E2,0+~.~.)}sin 22 

+ {(@?I, 1 B3,1+ ei:\, 1 El, 1 + e ( 2 )  1, -1,l E 1, -l + @:Ll, E3,J + c.c.} sin 2 .  (A 5) 

Here the perturbation @b, sin 2 4  = 80 of the mean vertical temperature distribution 
leads to a buoyancy force, which is balanced by the vertical pressure gradient (see 
(3.5e)). There is no induced motion and so (3.5) simply yields 

(A 6) - 7 p 2 )  
%?0,2 = -d A 1 +ALL $&,2 - 0,0 ,2  = 0. 

The remaining terms, which are calculated directly from (3.7) and (A 3), are 

[f2:] = - y ~ [ ~ 3 ~ ( l + / 3 2 ) ] a l a f l ,  [z] = - y ~ [ > / 2 ] ~ ~ u - ~ ,  (A7a ,b )  

0,2,2 %4 + P2) 2.0.2 

where y: = a2/(16+ 11P2+4B4), 7; = p2/(3-B2). (A 7 4  

Bf$1,1+ AtN!:;?,, 1 = O(A). (A 8 )  

U+l = & A~Kz$, + O(A), 

~6 = A~PU, a_, + O(A). 

According to ( 3 . 7 ~ )  no first harmonics El,*l are forced at this order provided 

Together with (A 3) this implies that 

(A 9a)  

(A 9 b )  

while (3.7f) and (A 4) imply that 

Equations (A 9 a ,  b )  constitute a conservative system, which possesses oscillatory 
solutions. Since they are neither forced nor damped, any secular changes originate 
from the order A terms which have been negIected so far. At this order the only 
contributions to Nc3) of interest are 

Npl,l = 4{$p-l,l q 2 , 2  + $0,2,2 (2) @l) 1,-1,1- V q l ,  1 q b ,  2 - Il.& 2 09,1,1> 

- 2 $ g l  e ~ ~ ~ , 2 - ~ ~ ~ ~ ~ ~ 1 , 1 e ~ ~ ) z , 2 - / 3 2 ~ ~ ~ , 1 , 1 e ~ ~ ~ , 2 + i / 3 ~ ( 1 ) 2 0 ~ ~ ) 1 , ,  (A 10) 

and N$:Ll,l, which is given by il similar expression. Likewise the only contribution 
to M(3) of interest is 

NL3) = + Ni31, (A l la)  

where according to (A 2) and (A 7) 

M(3) 2 i  - - (1 --a2) (fi4,2Ll,l g ~ ~ ~ l , l + 9 3 , 2 ~ l , l ~ ~ ~ ~ l , l )  T 20LP(f3\2!1,1fi(f::,l -9i?*l,l9i;Yl,l). 

(A l l b )  



470 A. M. Soward 

With the aid of (3.7 b), (3.9), (A 6) and (A 7), the expressions (A 10) and (A 11) reduce to 

N&,, 1 = 8{6V + 2A *1+ ( 2  + c, f C,) A TI} u*1, (A 12) 

where Cs = QP2yi+2(4+P2)a2yf ,  (A 14a) 

CA = 34 @{?: - 2( 5 + 2P2) y;} (A 146) 

and 6 and k+ are defined by (3.13g) and (3.13i) respectively. Correct to order A the 
consistency condition for the equations (3.7) is 

(A 15) &$,,1+ A*N$~&l,~+A(NI~?,,l- (H2)/34) OQ$1,1) = 0). 

It is used in conjunction with (A 12) to generalize (A 9a)  giving (3.12a). Likewise 
(3.7f), (A l la) ,  (A 13) generalize (A9b) giving (3.12b). 

Appendix B 

terms appearing in (4.19) and the average of the right-hand side of ( 4 . 6 ~ )  are 
It is assumed that Sio) and S?l are given by (4.15). Consequently the first non-zero 

pits- = - (C, - C,) sp, 
p@- V = - i(Cs - C,) Sio) S?i -p6(Sio) s?iz - 4h2)/SS~0)', 

( P I E )  B = k+ Sl" - k- S?i + Q(k+ + k-) SFi, 

(B la)  

(B 1b) 

(B 1c) 

@+ = 0, (B 1 e )  

- 

(p/e) GT = &(k+ 84') - k- S?!) S?i+ (k+ + k-) (3s;') AS?;' - 4h2)/8Si0), (B 1 d) 
- 

where terms of order E have been ignored. With the aid of these results it can be shown 
that 

#?](its+ + its- + 8-1 8) - Z ( E - 1 G -  x-, - @- v + E - 1 0 )  = - K ( S y  sy - 4h2)/4SIO), 

(B 2) 

where K is defined by (4.20b). In view of (4.19), the coefficient of h in ( 4 . 6 ~ )  can be 
readily calculated from (B 2 ) .  The right-hand side of (B 2) can be expressed in terms 
of E and S using the formulas (4.3b, d )  and (4.10), so yielding ( 4 . 2 0 ~ ) .  

Appendix C 

relations 
Substitution of (5.3) and (5.4) into ( 3 . 7 ~ )  shows that the forced modes satisfy the 

f 4L( I f L) a2) a*, (C 1 )  I 1 - - 

fZL+l, 1,l 

where 
by (A 2), is 

evolve according to ( 5 . 6 ~ ~  b). The coefficient Mi2in ( 5 . 5 ) ,  which is determined 

(C 2a)  M(3) - d ( 3 )  J(3 ) *  
2L - 2L + -2L9 
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where 

(C 2 c )  

where A* is defined by ( 5 . 7 b ) .  Substitution of (C 2a, c )  into ( 3 . 7 f )  yields ( 5 . 6 ~ ) .  Finally 
the contribution to N3) of interest is 

Upon substitution into (A 15), it yields (5.8).  
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